The Influence of Boundary Conditions on Tip Leakage Flow

Author:

Coull John D.1,Atkins Nicholas R.1

Affiliation:

1. Whittle Laboratory, University of Cambridge, 1 J. J. Thomson Avenue, Cambridge CB3 0DY, UK

Abstract

Much of the current understanding of tip leakage flow has been derived from detailed cascade studies. Such experiments are inherently approximate since it is difficult to simulate the boundary conditions that are present in a real machine, particularly the secondary flows convecting from the upstream stator row and the relative motion of the casing and blade. The problem is further complicated when considering the high pressure turbine rotors of aero engines, where the high Mach numbers must also be matched in order to correctly model the aerodynamics and heat transfer of the leakage flow. More engine-representative tests can be performed on high-speed rotating turbines, but the experimental resolution achievable in such setups is limited. In order to examine the differences between cascade and engine boundary conditions, this paper presents a numerical investigation into the impact of inlet conditions and relative casing motion (RCM) on the leakage flow of a high-pressure turbine rotor. The baseline calculation uses a simplified inlet condition and no relative endwall motion, in typical cascade fashion. Only minor changes to the leakage flow are induced by introducing either a more realistic inlet condition or RCM. However, when both of these conditions are applied simultaneously, the pattern of leakage flow is significantly altered, with ingestion of flow over much of the early suction surface. The paper explores the physical processes driving the changes, the impact on performance and the implications for future experimental investigations.

Publisher

ASME International

Subject

Mechanical Engineering

Reference22 articles.

1. Blade Tip Heat Transfer and Cooling Techniques,2004

2. Aerothermal Implications of Shroudless and Shrouded Blades,2004

3. Flow and Heat Transfer in Turbine Tip Gaps;ASME J. Turbomach.,1989

4. Turbine Blade Tip Heat Transfer in Low Speed and High Speed Flows;ASME J. Turbomach.,2011

5. Overtip Choking and Its Implications on Turbine Blade-Tip Aerodynamic Performance;J. Propul. Power,2011

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3