On the Use of the Instantaneous Angular Speed Measurement in Non Stationary Mechanism Monitoring

Author:

Andre´ Hugo1,Re´mond Didier1,Bourdon Adeline1

Affiliation:

1. Universite´ de Lyon, Villeurbanne, France

Abstract

Power transmission faults are one important cause of machine downtime many production activities are working to prevail. Vibration monitoring tools have achieved this role on the assumption that the stationary condition hypothesis is maintained. Several industries, including wind energy production, are however demanding to observe mechanical or electrical rotating components behaviour at variable speeds. Instantaneous angular speed measurement has been recently proven able to detect localized faults in bearings using only an encoder close from the source of the defect. This paper presents the results obtained from a large span experiment on a 2MW wind turbine. The uniqueness of the sensor used to monitor the whole line shafting along with the continuous non stationary conditions are so many difficulties cumulated on this attempt. Two basic signal processing tools are theoretically defined and experimentally applied in an original way on the Instantaneous Angular Speed measurement to efficiently tackle these practical issues.

Publisher

ASMEDC

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3