Prediction of Materials Damage History From Stress Corrosion Cracking in Boiling Water Reactors

Author:

Balachov Iouri1,Macdonald Digby1,Stellwag Bernhard2,Henzel Norbert2,Kilian Renate2

Affiliation:

1. Center for Advanced Materials, Pennsylvania State University, 517B Deike Building, University Park, PA 16802

2. Power Generation Group (KWU), Siemens AG, D-91050 Erlangen, Germany

Abstract

Over the past decade, we have developed deterministic models for predicting materials damage due to stress corrosion cracking (SCC) in boiling water reactor (BWR) primary coolant circuits. These steady-state models have been applied to fixed state points of reactor operation to yield electrochemical corrosion potential (ECP) and crack growth rate (CGR) predictions. However, damage is cumulative, so that prediction of the extent of damage at any given time must integrate crack growth rate over the history of the plant. In this paper, we describe the use of the REMAIN code to predict the accumulated damage functions for major components in the coolant circuit of a typical BWR that employs internal coolant pumps. As an example, the effect of relatively small amounts of hydrogen added to the feedwater (e.g., 0.5 ppm) on the development of damage from a 0.197-in. (0.5-cm) intergranular crack located at the exit of an internal pump was analyzed. It is predicted that hydrogen additions to the feedwater will effectively suppress further growth of the crack. We also report the first predictions of the accumulation of damage from SCC for a variable power operating cycle. We predict that the benefits of hydrogen water chemistry (HWC), as indicated by the behavior of a single crack under constant environmental conditions, are significantly muted by changes in reactor power. [S0094-9930(00)01301-9]

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Safety, Risk, Reliability and Quality

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3