Theoretical and Experimental Studies of Internal Cuttings Removal Bit

Author:

Cao Tong1,Yu Kaian1,Li Wenxing1,Chen Xuyue2,Zhu Hongwu1

Affiliation:

1. College of Mechanical and Transportation Engineering, China University of Petroleum, Beijing 102249, China

2. MOE Key Laboratory of Petroleum Engineering, China University of Petroleum, Beijing 102249, China

Abstract

Abstract The oil and gas exploration without rig (also known as badger exploration) is a novel exploration technology that removes the need for fixed rig drilling, bringing with it the promise of huge savings in terms of time and money and its low impact on the environment. The implementation of this technology is an autonomous exploration tool, which can drill into rock using an electrically powered bit to loosen and crush the formation ahead of it, and crushed cuttings is moved through the device and deposited in the space behind it. Because there is no drilling fluid in badger drilling, a new way of transporting cuttings is urgently needed. In this paper, a new kind of bit named internal cuttings removal (ICR) bit is developed for badger exploration, and it can not only drill rock but also collect and transport cuttings to the bit behind through the inner cavity of the bit. Compared with the common polycrystalline diamond compact (PDC) bit, the junk slots are removed, but the helical blades and screw conveyor are added on the ICR bit. Theoretically, the two effects of rotating helical blades on cuttings moving are studied, based on the conditions of low and high rotating speed, respectively. Moreover, the rate of cuttings removal of the ICR bit is given in formulas, and in order to ensure the cuttings is removed from bottomhole timely, and the maximum permissible rate of penetration (ROP) of the ICR bit is proposed. Finally, two samples of the ICR bit with different structural parameters were built and tested in dry and wet rock drilling experiments, and experimental results show that the ICR bit can achieve the expected goal of ICR, but wet cuttings has a significant influence on the performance of the ICR bit. By comparing the drilling results of two bits, it can be found that the concave blade surface, a small number of blades, and small inner cone angle have the positive effects on the cuttings removal of the ICR bit. The above work is helpful for the development and implementation of badger exploration technology.

Funder

National Natural Science Foundation of China

National Key Research and Development Project

Publisher

ASME International

Subject

Geochemistry and Petrology,Mechanical Engineering,Energy Engineering and Power Technology,Fuel Technology,Renewable Energy, Sustainability and the Environment

Reference32 articles.

1. Earthworms as Bio-Indicators of Chemical Pollution in Soils With Drilling Waste;Kujawska,2017

2. Oil Based Drilling Fluid Waste: An Overview on Environmentally Persistent Pollutants;Siddique,2017

3. Heavy Metal Pollution of Oil-Based Drill Cuttings at a Shale Gas Drilling Field in Chongqing, China: A Human Health Risk Assessment for the Workers;Xu;Ecotoxicol. Environ. Saf.,2018

4. Long Reach Well Concept;Stokka,2016

5. Breaking From the Norm to Reach Marginal Offshore Fields;Jacobs;J. Petrol. Technol.,2016

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3