Micro Gas Turbine Firing Kerosene and Ammonia

Author:

Iki Norihiko1,Kurata Osamu1,Matsunuma Takayuki1,Inoue Takahiro1,Suzuki Masato1,Tsujimura Taku2,Furutani Hirohide2

Affiliation:

1. National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, Japan

2. Fukushima Renewable Energy Institute, AIST (FREA), Koriyama, Fukushima, Japan

Abstract

A demonstration test with the aim to show the potential of ammonia-fired power plant is planned using a micro gas turbine. 50kW class turbine system firing kerosene is selected as a base model. A standard combustor is replaced by a prototype combustor which enables a bi fuel supply of kerosene and ammonia gas. Diffusion combustion is employed in the prototype combustor due to its flame stability. Demonstration test of co-firing of kerosene and ammonia gas was achieved to check the functionality of the each component of the micro gas turbine. The gas turbine started firing kerosene and increased its electric power output. After achievement of stable power output, ammonia gas was started to be supplied and its flow rate increased gradually. 21kW power generation was achieved with 30% decrease of kerosene by supplying ammonia gas. Ammonia gas supply increases NOx in the exhaust gas dramatically. However post-combustion clean-up of the exhaust gas via SCR can reduce NOx successfully.

Publisher

American Society of Mechanical Engineers

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3