Microscopic Spray Characteristics of Biodiesels Derived From Karanja, Jatropha, and Waste Cooking Oils

Author:

Patel Chetankumar1,Hwang Joonsik2,Bae Choongsik2,Agarwal Rashmi A.3,Agarwal Avinash Kumar1

Affiliation:

1. Department of Mechanical Engineering, Indian Institute of Technology Kanpur, Kanpur 208016, India

2. Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, South Korea

3. Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208016, India

Abstract

Abstract This study aims to assess the microscopic characteristics of Jatropha, Karanja, and Waste cooking oil-based biodiesels vis-a-vis conventional diesel under different ambient conditions in order to understand the in-cylinder processes, while using biodiesels produced from different feedstocks in the compression ignition engines. All test-fuels were injected in ambient atmosphere using a common-rail direct injection (CRDI) fuel injection system at a fuel injection pressure (FIP) of 40 MPa. Microscopic spray characteristics were measured using phase Doppler interferometer (PDI) in the axial direction of the spray at a distance of 60–90 mm downstream of the nozzle and at 0 to 3-mm distance from the central axis in the radial direction. All biodiesels exhibited relatively larger Sauter mean diameter (SMD) of the spray droplets and higher droplet velocities compared to baseline mineral diesel, possibly due to relatively higher fuel viscosity and surface tension of biodiesels. It was also observed that SMD of the spray droplets decreased with increasing distance in the radial and axial directions and the same trend was observed for all test-fuels.

Funder

Department of Science and Technology

National Research Foundation of Korea

Publisher

ASME International

Subject

Geochemistry and Petrology,Mechanical Engineering,Energy Engineering and Power Technology,Fuel Technology,Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3