Effects of Flow Pulsation and Surface Geometry on Heat Transfer Performance in a Channel With Teardrop-Shaped Dimples Investigated by Large Eddy Simulation

Author:

Inokuma Kento1,Yawata Yuki12,Murata Akira1,Iwamoto Kaoru1

Affiliation:

1. Department of Mechanical Systems Engineering, Tokyo University of Agriculture and Technology, 2-24-16, Nakacho, Koganei, Tokyo 184-8588, Japan

2. Tokyo University of Agriculture and Technology

Abstract

Abstract Large eddy simulation was performed to investigate heat transfer performance of a pulsating flow over teardrop-shaped dimples. A total of six geometries of dimpled surfaces were examined for dimple arrangements of in-line/staggered/original and dimple inclination angle of 0–60 deg. Pulsating flows were generated by sinusoidally varying the volume-averaged velocity. The pulsation frequency and amplitude were changed for the Strouhal number of 0–0.60 and the root-mean-square velocity amplitude normalized by the bulk flow velocity of 0–0.14. The results showed that the surface-averaged Nusselt number and friction factor were larger for the pulsating flow case than for the steady flow case. The surface-averaged Nusselt number ratio and the friction factor increased with the Strouhal number up to the Strouhal number of 0.30. For the Strouhal number larger than 0.30, they decreased with the Strouhal number or stayed almost constant. Consequently, the heat transfer efficiency index increased with the Strouhal number. The increase in the local Nusselt number ratio due to the flow pulsation was observed at the leading-edge region of the dimples. The results of the streamlines near the dimple showed that the swirling separation bubble was located closer to the leading-edge region due to the pulsation, which resulted in the increase of the absolute values of the turbulent heat flux and the local Nusselt number ratio.

Funder

Japan Society for the Promotion of Science

Publisher

ASME International

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3