Simulation of Stress Corrosion Cracking in In-Core Monitor Housing of Nuclear Power Plant

Author:

Shintaku Yuichi1,Iwamatsu Fuminori2,Suga Kazuhiro1,Wada Yoshitaka3,Kikuchi Masanori1

Affiliation:

1. Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan e-mail:

2. Hitachi Research Laboratory, Hitachi, Ltd., 11 Saiwai-cho 3-chome, Hitachi, Ibaraki 317-8511Japan e-mail:

3. Kinki University, 341, Kowakae, Higashiosaka 577-8502, Japan e-mail:

Abstract

In the in-core monitor (ICM) housing of a reactor pressure vessel (RPV), residual stress has been widely reported to cause stress corrosion cracking (SCC) damage in the weld heat-affected zone. For this reason, it is important to evaluate the crack growth conservatively, and with high confidence to demonstrate fitness for service. This paper presents crack growth simulations in an ICM housing, which is welded at two different angles to the RPV. One weld angle is at the bottom of the RPV, and the welding area of the ICM housing is axisymmetric. The other angle is at the curved position of the RPV, and the weld area of the ICM housing is asymmetric. In these weld areas, crack growth behavior is estimated by superposed-finite element method (S-FEM), which allows generation of a global finite model and a detailed local mesh representing the crack independently. In the axisymmetric weld area, axial, slant and circumferential surface cracks are assumed at two locations where the residual stress fields are different from each other: one is isotropic and the other is circumferential. It is shown that crack growth behaviors are different under different residual stress fields. The results of S-FEM are compared with those of the influence function method (IFM), which assumes that an elliptical crack shape exists in a plate. It is shown that the IFM result is conservative compared to that of S-FEM. Next, an axial surface crack is assumed at the uphill, downhill, and midhill asymmetric weld areas. The midhill crack growth behavior is different from the uphill and downhill behaviors. Finally, two surface cracks are simulated in the asymmetric weld area and two initial crack arrangements are assumed. These results show the differences of the crack interaction and the crack growth process.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Safety, Risk, Reliability and Quality

Reference27 articles.

1. Codes for Nuclear Power Generation Facilities: Rule of Fitness-for-Service for Nuclear Power Plants,2008

2. Rules on Fitness-for-Service for Nuclear Power Plants,2004

3. Analysis of Stress Intensity Factors for Surface Cracks Subjected to Arbitrarily Distributed Surface Stresses;Trans. JSME, Ser. A,1985

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3