Fabrication of Aluminum–SiC Laminate Nanocomposite by Ultrasonic Spray Deposited Sheet Bonding1

Author:

Bastwros Mina1,Kim Gap-Yong1

Affiliation:

1. Mem. ASME Department of Mechanical Engineering, Iowa State University, 2034 H.M. Black Engineering, Ames, IA 50011 e-mail:

Abstract

One of the challenges in making layered metal composites reinforced at interfaces has been controlling the dispersion and microstructure of the reinforcement particles. The reinforcement elements are typically applied at the interface by manual spreading using brush or by immersing the substrate in a suspension. In this study, an ultrasonic spraying technique has been used to deposit silicon carbide (SiC) nanoparticles on aluminum 6061 (Al6061) substrate foils to fabricate a laminate metal composite to control the deposited structure. The suspension parameters and the spraying parameters were investigated, and their influence on the deposited microstructure was analyzed. The laminate composite was consolidated using hot compaction, and a three-point bend test was performed to evaluate the mechanical properties. The yield and ultimate flexural strengths of the laminate composite reinforced with SiC nanoparticles increased by 32% and 15%, respectively, compared with those of the unreinforced sample prepared at the same condition.

Publisher

ASME International

Subject

Industrial and Manufacturing Engineering,Process Chemistry and Technology,Mechanics of Materials

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3