Development and Application of a Fast-Response Total Temperature Probe for Turbomachinery

Author:

Arenz Martin C.1,Weigel Björn2,Habermann Jan2,Staudacher Stephan2,Rose Martin G.3,Berns Wolfgang4,Lutum Ewald5

Affiliation:

1. Institute of Aircraft Propulsion Systems, University of Stuttgart, Pfaffenwaldring 6, Stuttgart 70569, Germany e-mail:

2. Institute of Aircraft Propulsion Systems, University of Stuttgart, Pfaffenwaldring 6, Stuttgart 70569, Germany

3. Department of Engineering and Design, University of Sussex, Sussex House, Falmer, Brighton BN1 9RH, UK

4. Berns Engineers GmbH, Friedrichshafener Straße 3, Gilching 82205, Germany

5. MTU Aero Engines AG, Dachauer Straße 665, München 80995, Germany

Abstract

The measurement of unsteady total temperature is of great interest for the examination of loss mechanisms in turbomachinery with respect to the improvement of the efficiency. Since conventional thermocouples are limited in frequency response, several fast-response total temperature probes have been developed over the past years. To improve the spatial resolution compared to these existing probes and maintaining a high temporal resolution, a new fast-response total temperature probe has been developed at the Institute of Aircraft Propulsion Systems (ILA), Stuttgart, Germany in cooperation with Berns Engineers, Gilching, Germany. The design of the probe allows a sensitive measuring surface below 1 mm2. A detailed insight into the design of the probe, the measurement principle, the calibration process, and an estimation of the measurement uncertainty is given in the present paper. Furthermore, to prove the functionality of the probe, first experimental results of a simple test bed and of area traverses downstream of the first rotor of a two-stage low pressure turbine are presented. It is shown, that the new probe is capable of detecting rotor characteristic effects as well as rotor-stator-interactions. In addition, a hot-spot is investigated downstream of the first rotor of the turbine, and the findings are compared to the effects known from the literature.

Publisher

ASME International

Subject

Mechanical Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3