Affiliation:
1. Department of Naval Architecture, Ocean and Marine Engineering, University of Strathclyde, Glasgow, Lanarkshire G4 0LZ, UK
Abstract
A new peridynamic (PD) formulation is developed for cubic polycrystalline materials. The new approach can be a good alternative to traditional techniques such as finite element method (FEM) and boundary element method (BEM). The formulation is validated by considering a polycrystal subjected to tension-loading condition and comparing the displacement field obtained from both PDs and FEM. Both static and dynamic loading conditions for initially damaged and undamaged structures are considered and the results of plane stress and plane strain configurations are compared. Finally, the effect of grain boundary strength, grain size, fracture toughness, and grain orientation on time-to-failure, crack speed, fracture behavior, and fracture morphology are investigated and the expected transgranular and intergranular failure modes are successfully captured. To the best of the authors' knowledge, this is the first time that a PD material model for cubic crystals is given in detail.
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science
Cited by
72 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献