An Accelerating Sweep Frequency Excitation Method for the Rotordynamic Coefficients Identification of Annular Gas Seals Based on Computational Fluid Dynamics

Author:

Gu Qianlei1,Yang Jiangang1,Zhang Wanfu2,Zhang Mingjie1

Affiliation:

1. National Engineering Research Center of Turbo-Generator Vibration, School of Energy and Environment Southeast University, Sipailou 2#, Nanjing, Jiangsu Province 210096, China

2. School of Energy and Power Engineering, Institute of Fluid Machinery and Engineering, University of Shanghai for Science and Technology, No. 516 Jungong Road, Shanghai 200093, China

Abstract

Abstract This article proposes a rotordynamic identification method using the accelerating sweep frequency excitation method. The computational fluid dynamics transient solution combined with the moving grid method is utilized to obtain the transient flow field of the seal excited by the whirling rotor with an accelerating frequency. Rotordynamic coefficients at swept frequencies are obtained by analyzing the transient response force acting on the rotor. Rotordynamic coefficients of three published experimental seals including a labyrinth seal, a fully partitioned pocket damper seal and a honeycomb seal are identified to validate the proposed method. The results show that the predicted rotordynamic coefficients are all well agreement with the trend of experimental data. Compared with the existing numerical models based on transient solutions, the central processing unit consumption of the proposed method is substantially reduced by 98% when achieving the same frequency resolution. In addition, the impact of the exciting acceleration on the identification accuracy is also illustrated.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Shanghai

Publisher

ASME International

Subject

Mechanical Engineering,Energy Engineering and Power Technology,Aerospace Engineering,Fuel Technology,Nuclear Energy and Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3