Validation of Turbulent Natural Convection in a Square Cavity for Application of CFD Modeling to Heat Transfer and Fluid Flow in a Data Center

Author:

Durand-Estebe B.12,Lebot C.1,Arquis E.1,Mancos Jn.2

Affiliation:

1. I2M TREFLE, Pessac, France

2. Cap-Ingelec, St Jean d’Illac, France

Abstract

Air flow management in a Data-center is a critical problem when designing HVAC (Heating, Ventilation and Air-Conditioning) system. Providing a sufficient cooling air volume at a designed temperature to all the informatics equipments, avoiding recirculation phenomenon, optimizing the installations in order to minimize the temperature difference between air exiting the CRAC (Computer Room Air Conditioning) and the air at the intake of the servers are parts of the multiples target that have to be reached in order to have the most efficient ventilation system. In most of today’s data center, the IT (Information Technology) equipment dissipates between 12kW of heat for regular material, to up to 32kW for the recent high density server’s rack. Such a power release has to be cooled by efficient cooling system. During this process the airflow temperature can increase by over 10K, and the air velocity can vary from 0.09m/s to more than 5m/s. Considering these large gradient of temperature and air speed several phenomenon must be taken into account, including turbulent natural convection. To achieve these goals, we will use a CFD software to predict the airflow behaviour inside the Data-center. Therefore, the code must be able to accurately model turbulent airflow and heat transfers. We used the software (http/www.thetis.enscbp.fr) to simulate a 2D turbulent natural convection in a square cavity. The k-ε equations were solved to predict turbulent effects. The obtained results were compared to an experimental benchmark and are presented in the document. In the last part of the paper we present the results of a 2D simulation representing a working server in a computer room cooled by a CRAC (Computer Room Air Conditioning) unit. The airflow characteristics in the whole domain were determined using various dimensionless numbers in order to select the right physical and mathematical objects. Finally the results of a 3D simulation are presented and the cooling system performances are estimated.

Publisher

American Society of Mechanical Engineers

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3