Thermal Fly-Height Control Slider Instability and Dynamics at Touchdown: Explanations Using Nonlinear Systems Theory

Author:

Canchi Sripathi Vangipuram1,Bogy David B.2

Affiliation:

1. Department of Mechanical Engineering, Computer Mechanics Laboratory, University of California, Berkeley, CA 94720

2. Department of Mechanical Engineering, University of California, Berkeley, CA 94720

Abstract

Thermal fly-height control sliders are widely used in current hard disk drives to control and maintain subnanometer level clearance between the read-write head and the disk. The peculiar dynamics observed during touchdown/contact tests for certain slider designs is investigated through experiments and analytical modeling. Nonlinear systems theory is used to highlight slider instabilities arising from an unfavorable coupling of system vibration modes through an internal resonance condition, as well as the favorable suppression of instabilities through a jump condition. Excitation frequencies that may lead to large amplitude slider vibrations and the dominant frequencies at which slider response occurs are also predicted from theory. Using parameters representative of the slider used in experiments, the theoretically predicted frequencies are shown to be in excellent agreement with experimental results. This analytical study highlights some important air bearing surface design considerations that can help prevent slider instability as well as help mitigate unwanted slider vibrations, thereby ensuring the reliability of the head-disk interface at extremely low head-disk clearances.

Publisher

ASME International

Subject

Surfaces, Coatings and Films,Surfaces and Interfaces,Mechanical Engineering,Mechanics of Materials

Cited by 28 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3