Active Vibration Control of Piezoelectric Beam Using the PID Controller

Author:

Alnuaimi Mohammed1,BuAbdulla Abdulaziz1,Silva Tarcísio1,Altamimi Sumaya1,Lee Dong-Wook1,Al Teneiji Mohamed1

Affiliation:

1. Technology Innovation Institute, Abu Dhabi, United Arab Emirates

Abstract

Abstract Vibration control using piezoelectric materials has been widely investigated over the past decades. Particularly, active controllers achieve greater vibration control over wider frequency ranges than other vibration control techniques. Active controllers make use of sensors, actuators, and control laws. While most researchers focus on improving the control law, investigations on the optimal placement of sensors and actuators remain much less explored. This work presents a simple and quick methodology to obtain the optimal placement of piezoelectric sensors and actuators on different electromechanically coupled systems, without using classical beam or plate structures or limiting assumptions (symmetrical bending, linear strain, etc.). Optimal placement of sensors and actuators is performed based upon two criteria: i) varying the number of piezoelectric layers used for sensing and actuation and ii) varying the position over the structure’s thickness. Each criterion (i and ii) is presented and discussed in a different study case. Results show that as the number of piezoelectric layers increases, vibrations are controlled more efficiently. However, stacking several piezoelectric materials is not easily feasible in practice, leading to a tradeoff between reducing vibrations (using more layers) and ease of assembly. As of criterion ii), optimal placement of piezoelectric sensors and actuators is the farthest possible from the neutral line since sensors generate larger signal output (increased sensor gain), and actuators apply larger momentum on the system reducing more vibrations.

Publisher

American Society of Mechanical Engineers

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3