Current Research Trends in Variants of Minimum Quantity Lubrication (MQL): A Review

Author:

Ali Shafahat1,Pervaiz Salman1,Kannan Sathish2

Affiliation:

1. Rochester Institute of Technology, Dubai, United Arab Emirates

2. American University of Sharjah, Sharjah, United Arab Emirates

Abstract

Abstract In this paper, an extensive literature review of sustainable machining using different minimum quantity lubrication (MQL) variants is presented. Nowadays, sustainable development (SD) is referred as a common global issue. Sustainability concept in machining is linked with two major goals. The first goal is to reduce the environmental impact by reducing the energy consumption in the process. The second goal is to reduce the consumption of hazardous non-biodegradable materials. During machining, it was evident that when the cutting of material takes place, it increases the heat produced due to plastic shear deformation and friction. In dry machining, the tool wear and surface roughness are very high and it is not practical to use this method. So, there is a need to introduce a coolant or lubricant in the cutting zone to control or reduce the cutting temperature. Conventional cutting fluids are referred as non-biodegradable in nature and high disposal cost is associated with them as well. The researchers found that Minimum quality lubricant (MQL) is an appropriate way to remove the heat from the work material and chips formed in this case are almost dry. Minimum quantity lubrication (MQL) has been emerged as a potential solution for the second goal. MQL is being popular in the metal cutting sector because of its ability to provide improved machinability while being sustainable at the same time. The main topic discussed in this article is to reduce the quantity of lubricant for the machining usage to move forward towards a cleaner and greener machining process. The research community also observed that when moving towards the superalloys primarily used in the aerospace and aircraft industry MQL technique is not efficient. Using the MQL technique, the friction is reduced by this lubricant film, but it does not take away the heat generated from the work material and tool. Due to this reason, several variants of MQL were developed. These variants include advanced oil on water (OoW) droplet MQL, minimum quantity cooling lubricant (MQCL), and nano MQL etc. In MQCL coolant is used at the lower temperature, which is air or water, to remove the extra amount of heat from the work material. The current study compared performance of all these MQL variants. It has also been observed that MQL operating parameters and jet arrangements can significantly affect the machining performance. The current study will provide a detailed comprehensive review about the performance of these variants.

Publisher

American Society of Mechanical Engineers

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Influence of nanoparticle concentration in nanofluid MQL on cutting forces, tool wear, chip morphology when milling of Inconel 718;The International Journal of Advanced Manufacturing Technology;2023-10-06

2. Performance assessment of different cooling conditions in the sustainable machining of Hastelloy X alloy;Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering;2023-08-30

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3