Electronic Cooling Using Synthetic Jets

Author:

Pavlova Anna A.1,Amitay Michael1

Affiliation:

1. Rensselaer Polytechnic Institute, Troy, NY

Abstract

Efficiency of synthetic jet impingement cooling and the mechanisms of heat removal from a constant heat flux surface were investigated experimentally. The effects of jet’s formation frequency and Reynolds number at different nozzle-to-surface distances were investigated and compared to steady jet cooling. It was found that synthetic jets are up to three times more effective than steady jets at the same Reynolds number. For smaller distances, high formation frequency (f = 1200 Hz) synthetic jets remove heat better than low frequency (f = 420 Hz) jets, whereas low frequency jets are more effective at larger distances, with an overlapping region. Using PIV, it was shown that at small distances between the synthetic jet and the heated surface, the higher formation frequency jet is associated with accumulation of vortices before they impinge on the surface. For the lower frequency jet, the wavelength between coherent structures is so large that vortex rings impinge on the surface separately.

Publisher

ASMEDC

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Influence of mass flux ratio and phase difference on impingement heat transfer characteristics of coaxial synthetic jet;International Journal of Heat and Mass Transfer;2024-12

2. A novel synthetic jet based heat sink with PCM filled cylindrical fins for efficient electronic cooling;Journal of Energy Storage;2023-02

3. Volumetric flow characterisation of a rectangular orifice impinging synthetic jet with single-camera light-field PIV;Experimental Thermal and Fluid Science;2021-05

4. Micro-Coolers;Reference Module in Materials Science and Materials Engineering;2017

5. Vortex Formation of a Synthetic Jet(Fluids Engineering);Transactions of the Japan Society of Mechanical Engineers Series B;2009

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3