Affiliation:
1. School of Naval Architecture and Marine Engineering, National Technical University of Athens, 9 Heroon Polytechniou Street, 15710 Zografos, Greece
2. Machine Design Laboratory, Department of Mechanical Engineering and Aeronautics, University of Patras, 26504 Patras, Greece
Abstract
An optimization study of trapezoidal surface texturing in slider micro-bearings, via computational fluid dynamics (CFD), is presented. The bearings are modeled as micro-channels, consisting of a moving and a stationary wall. The moving wall (rotor) is assumed smooth, while part of the stationary wall (stator) exhibits periodic dimples of trapezoidal form. The extent of the textured part of the stator and the dimple geometry are defined parametrically; thus, a wide range of texturing configurations is considered. Flow simulations are based on the numerical solution of the Navier–Stokes equations for incompressible isothermal flow. To optimize the bearing performance, an optimization problem is formulated and solved by coupling the CFD code with an optimization tool based on genetic algorithms and local search methods. Here, the design variables define the bearing geometry, while load carrying capacity is the objective function to be maximized. Optimized texturing geometries are obtained for the case of parallel bearings for several numbers of dimples, illustrating significant load carrying capacity levels. Further, these optimized texturing patterns are applied to converging bearings for different convergence ratio values; the results demonstrate that, for small and moderate convergence ratios, a substantial increase in load carrying capacity, in comparison to smooth bearings, is obtained. Finally, an optimization study performed at a high convergence ratio shows that, in comparison to the parallel slider, the optimal texturing geometry is substantially different, and that performance improvement over smooth bearings is possible even for steep sliders.
Subject
Mechanical Engineering,Energy Engineering and Power Technology,Aerospace Engineering,Fuel Technology,Nuclear Energy and Engineering
Cited by
32 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献