Improved Concept and Model of Eddy Current Damper

Author:

Sodano Henry A.1,Bae Jae-Sung2,Inman Daniel J.3,Belvin W. Keith4

Affiliation:

1. Mechanical Engineering Department, Michigan Technological University, 1400 Townsend Dr., Hdoughton, MI 49931

2. Wind Power/Fluid Machinery Research Center, Department of New & Renewable Energy Research, Korea Institute of Energy Research

3. Center for Intelligent Material Systems and Structures, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061-0261

4. Structural Dynamics Branch, NASA Langley Research Center, Hampton, VA 23681-0001

Abstract

When a conductive material experiences a time-varying magnetic field, eddy currents are generated in the conductor. These eddy currents circulate such that they generate a magnetic field of their own, however the field generated is of opposite polarity, causing a repulsive force. The time-varying magnetic field needed to produce such currents can be induced either by movement of the conductor in the field or by changing the strength or position of the source of the magnetic field. In the case of a dynamic system the conductor is moving relative to the magnetic source, thus generating eddy currents that will dissipate into heat due to the resistivity of the conductor. This process of the generation and dissipation of eddy current causes the system to function as a viscous damper. In a previous study, the concept and theoretical model was developed for one eddy current damping system that was shown to be effective in the suppression of transverse beam vibrations. The mathematical model developed to predict the amount of damping induced on the structure was shown to be accurate when the magnet was far from the beam but was less accurate for the case that the gap between the magnet and beam was small. In the present study, an improved theoretical model of the previously developed system will be formulated using the image method, thus allowing the eddy current density to be more accurately computed. In addition to the development of an improved model, an improved concept of the eddy current damper configuration is developed, modeled, and tested. The new damper configuration adds significantly more damping to the structure than the previously implemented design and has the capability to critically damp the beam’s first bending mode. The eddy current damper is a noncontacting system, thus allowing it to be easily applied and able to add significant damping to the structure without changing dynamic response. Furthermore, the previous model and the improved model will be applied to the new damper design and the enhanced accuracy of this new theoretical model will be proven.

Publisher

ASME International

Subject

General Engineering

Reference24 articles.

1. Magnetic Braking: Simple Theory and Experiment;Wiederick;Am. J. Phys.

2. Magnetic Braking: Improved Theory;Heald;Am. J. Phys.

3. Magnetic Damping: Analysis of an Eddy Current Brake Using an Airtrack;Cadwell;Am. J. Phys.

4. A Contactless Eddy Current Brake System;Lee

5. Analytical and Experimental Investigation of a Magnetic Radial Passive Damper;Genta

Cited by 111 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3