Endothelialization of the Luminal Sac in Artificial Cardiac Prostheses: A Challenge for Both Biologists and Engineers

Author:

Lelkes P. I.1,Samet M. M.1

Affiliation:

1. Department of Medicine, Laboratory of Cell Biology, University of Wisconsin Medical School, Milwaukee Clinical Campus, Milwaukee, WI 53201-342

Abstract

Thromboembolic complications are a major obstacle for the permanent use of artificial cardiac prostheses. Many of these complications are caused by the intrinsic thrombogenicity of the biomaterials, which are used to cast the luminal blood sac. Numerous attempts have been made to improve the hemocompatibility of the new generation of totally implantable blood pumps, mainly by physico-chemical modifications of the biopolymeric materials and the blood contacting surfaces. We, on the other hand, believe that the most promising and challenging approach, from both the biologists’ and engineers’ point of view, is to coat the luminal surfaces of cardiac prostheses with a functional monolayer of autologous endothelial cells (ECs) and thus reproduce “nature’s biocompatible blood container.” The key to lining an artificial heart with a nonthrombogenic monolayer of endothelial cells is to explore the molecular and cellular mechanisms which render the EC lining inside the beating ventricle nonthrombogenic and resistant to flow-induced shear stresses and cyclic, tensional deformations. This knowledge has then to be translated into biotechnological know-how, in order to maintain an intact EC monolayer inside the blood sac of an artificial device. In this paper we emphasize some of the bioengineering issues associated with the endothelialization of the luminal sac, and also discuss some aspects related to the blood sac itself.

Publisher

ASME International

Subject

Physiology (medical),Biomedical Engineering

Cited by 22 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3