Large Eddy Simulation of Liquid Metal Turbulent Mixed Convection in a Vertical Concentric Annulus

Author:

Marocco Luca1,Garita Francesco2

Affiliation:

1. Department of Energy, Politecnico di Milano, Milan 20156, Italy e-mail:

2. Department of Energy, Politecnico di Milano, Milan 20156, Italy

Abstract

In the present study, turbulent forced and mixed convection heat transfer to a liquid metal flowing upwards in a concentric annulus is numerically investigated by means of large eddy simulation (LES). The inner-to-outer radius ratio is 0.5. The Reynolds number based on bulk velocity and hydraulic diameter is 8900, while the Prandtl number is set to a value of 0.026. A uniform and equal heat flux is applied on both walls. LES has been chosen to provide sufficiently accurate results for validating Reynolds-averaged turbulence models. Moreover, with the thermal sublayer thickness of liquid metals being much larger than the viscous hydrodynamic one, liquid metals present a separation between the turbulent thermal and hydrodynamic scales. Thus, with the same grid resolution, it is possible to perform a LES for the flow field and a “thermal” direct numerical simulation (DNS) for the temperature field. Comparison of the forced convection results with available DNS simulations shows satisfying agreement. Results for mixed convection are analyzed and the differences with respect to forced convection at the same Reynolds number are thoroughly discussed. Moreover, where possible, a comparison with air is made.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3