Improving the Spatial Resolution and Stability by Optimizing Compact Finite Differencing Templates

Author:

Jordan Stephen A.1

Affiliation:

1. Naval Undersea Warfare Center, Newport, RI 02842

Abstract

Parameter optimization is an excellent path for easily raising the resolution efficiency of compact finite differencing schemes. Their low-resolution errors are attractive for resolving the fine-scale turbulent physics even in complex flow domains with difficult boundary conditions. Most schemes require optimizing closure stencils at and adjacent to the domain boundaries. But these constituents can potentially degrade the local resolution errors and destabilize the final solution scheme. Current practices optimize and analyze each participating stencil separately, which incorrectly quantifies their local resolution errors. The proposed process optimizes each participant simultaneously. The result is a composite template that owns consistent spatial resolution properties throughout the entire computational domain. Additionally, the optimization technique leads to templates that are numerically stable as understood by an eigenvalue analysis. Finally, the predictive accuracy of the optimized schemes are evaluated using four canonical test problems that involve resolving linear convection, nonlinear Burger wave, turbulence along a flat plate, and circular cylinder wall pressure.

Publisher

ASME International

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.7亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2025 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3