Simulating and Measuring Structural Intensity Fields in Plates Induced by Spatially and Temporally Random Excitation

Author:

Daley Michael J.1,Hambric Stephen A.2

Affiliation:

1. Akustica, Inc., 2403 Sidney St, Suite 270, Pittsburgh, PA 15203

2. Applied Research Laboratory, The Pennsylvania State University, PO Box 30, State College, PA 16804

Abstract

The structure-borne power in bending waves is well understood, and has been studied by many investigators in ideal beam and plate structures. All studies to date, however, have considered only the structural intensity induced by deterministic, localized drives. Since many structures of practical interest are excited by spatially random pressure fields, such as diffuse and turbulent boundary layer pressure fluctuations, techniques for measuring and predicting the structural intensity patterns in flat plates excited by such fields are presented here. The structural intensity at various frequencies in a simply supported, baffled, flat plate driven by a diffuse pressure field is simulated using analytical techniques and measured by post-processing data from a scanning laser Doppler vibrometer and reference accelerometer using finite differencing techniques. The measured and simulated fields are similar, and show intensity patterns different from those caused by deterministic point drives. Specifically, no clear source regions are apparent in the randomly driven intensity fields, although the energy flow patterns do clearly converge toward a point damper attached to the plate.

Publisher

ASME International

Subject

General Engineering

Reference11 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3