Affiliation:
1. California Institute of Technology, Pasadena, Calif.
Abstract
Knowledge of the dynamic performance of pumps is essential for the prediction of transient behavior and instabilities in hydraulic systems; the necessary information is in the form of a transfer function which relates the instantaneous or fluctuating pressure and mass flow rate at inlet to the same quantities in the discharge from the pump. The presence of cavitation within the pump can have a major effect on this transfer function since dynamical changes in the volume of cavitation contribute to the difference in the instantaneous inlet and discharge mass flow rates. The present paper utilizes results from free streamline cascade theory to evaluate the elements in the transfer function for a cavitating inducer and shows that the numerical results are consistent with the characteristics observed in some dynamic tests on rocket engine turbopumps.
Cited by
91 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献