Effective Conductivity of a Composite in a Primitive Tetragonal Lattice of Highly Conducting Spheres in Resistive Thermal Contact With the Isolating Matrix

Author:

Filip Cristina1,Garnier Bertrand,Danes Florin2

Affiliation:

1. Department of Thermics, Universitatea Politehnică, Splaiul Independenţei 153, Bucureşti/România

2. Laboratoire de Thermocinetique, UMR CNRS 6607, Ecole Polytechnique de l’Université de Nantes, 3 rue Christian, Pauc, 44300 Nantes, France

Abstract

A state-of-the-art study and a physical and numerical 3D finite element study of anisotropic conduction through composites filled with isometric inclusions of different conductivity were performed by modeling the longitudinal conduction across a tetragonal lattice of spheres in imperfect contact with the surrounding matrix. In dimensionless variables, the effective conductivity E is expressible as a function of a geometrical parameter B, reflecting the relative thickness of the gap between spheres, the Kapitza resistance C of the contact inclusion/matrix, and the relative resistivity D of the filler. The computation of some 600 E values at some 25 levels of the factors B, C, and D allows one to find some features, such as the leading role of the factor whose value is the highest of three, the low effect of the interactions between factors, the imperfect equivalence of the effects of the three factors, the slow and linear E dependence on the second and third greatest factor, and finally, the asymptotically exact linear relationship between E and the logarithmated sum of factors, with a slope depending only slightly on the relative magnitudes of factors.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3