Affiliation:
1. Queen’s University, Kingston, ON, Canada
Abstract
One of the inter-connected factors that can lead to failures in the flow plates of PEM fuel cells is the pressure differences that exist between adjacent flow channels. These pressure differences lead to stresses in the channel supports, i.e., the ribs, which can be important in the presence of stresses arising due to other factors such as temperature gradients in the flow plates. In order to investigate the magnitudes of the pressure differences across the supports and the places where the maximum pressure differences occur, the flow and pressure variations in various forms of serpentine channels, these channels having a rectangular cross-sectional shape, have been numerically calculated. The presence of the diffusion layer has been ignored and the flow has been calculated using a commercial finite-element software package using the governing equations written in dimensionless form. Solutions have been obtained for various values of the Reynolds number for each of the flow geometries considered for two channel height-to width ratios (one and three). Except for the flow in the vicinity of the bends in channels, the pressure has been found, as is to be expected, not vary significantly across the channel cross-section. The difference between the center point dimensionless pressure in a given channel with those at the same longitudinal position in the adjacent channels has been determined. The dependence of the highest dimensionless pressure difference between channel on the input parameters has been examined.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献