Friction, Restitution, and Energy Loss in Planar Collisions

Author:

Brach R. M.1

Affiliation:

1. Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, Ind. 46556

Abstract

Both particle and rigid body planar collisions are covered in this paper. For particles, the classical equations for oblique impacts are derived using Newton’s laws along with definitions of the coefficient of restitution and equivalent coefficient of friction. A general expression is obtained for the kinetic energy loss explicity containing the two coefficients. This expression for energy loss as a function of the friction coefficient possesses a maximum. The value of the friction coefficient at the maximum is a limiting value which can be used to determine whether or not sliding exists at separation. The maximum energy loss is independent of the physical mechanism of generation of tangential forces (friction) and serves as an upper bound for two-particle collisions. It is shown that to properly formulate and solve the rigid body problem, a moment must be considered at the common “point” of impact. A moment coefficient of restitution must be defined. This leads to six linear algebraic equations from which the six final velocity components can be calculated. An analytical solution is obtained for the general rigid body problem. In a reduced form, it is used to solve the problem of a single rigid body impacting a rigid barrier. This solution is then applied to a classical textbook problem. As shown for particle impacts, the concepts of limiting friction coefficient and maximum energy loss apply to rigid body impacts.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 77 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3