Investigation of Bubble Frequency for Slug Flow Regime in a Uniformly Heated Horizontal Microchannel

Author:

Younes Amen1,Hassan Ibrahim2,Kadem Lyes1

Affiliation:

1. Department of Mechanical and Industrial Engineering, Concordia University, 1455 de Maisonneuve Boulevard W, Montréal, QC H3G 1M, Canada

2. Mechanical Engineering Department, Texas A&M University at Qatar, P.O. Box 23874, Doha, Qatar e-mail:

Abstract

Slug flow is an essential flow pattern observed in microchannels where its transition boundaries in microchannels are characterized by two complex hydrodynamic phenomena, the bubble confinement and the bubble coalescence. Slug flow may be classified in terms of bubble size into two major zones: isolated bubble zone and coalescence bubble zone. In this paper, a semi-analytical model is developed for predicting the main characteristics of isolated bubble zone for flow boiling in a horizontal microchannel. The influences of surface tension, shear, and inertial forces have been taken into account. The model is developed on the basis of drift flux model, and a fully developed slug unit is chosen as a control volume for deriving the equations of motion. The effects of main operating conditions, mass and heat fluxes, on bubble length and bubble frequency have been investigated. The boundaries of slug flow regime have been identified based on the most proper diabatic flow pattern maps available in the literature for the chosen database. The model has been validated using the database available in the literature for flow boiling of R134a and R245fa in 0.509 mm and 3.0 mm inner diameter horizontal mini-tubes, respectively, and over wide range of mass fluxes (300≤G≤1000 kg/m2 s). This study has shown that the mass flux has a significant effect on the slug length and the bubble frequency. The model gave a good agreement with the experimental data of bubble length and bubble frequency with a mean absolute error (MAE) of 18.0% and 27.34%, respectively.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3