An Adaptive Directional Boundary Sampling Method for Efficient Reliability-Based Design Optimization

Author:

Meng Zeng12,Zhang Dequan3,Liu Zhaotao4,Li Gang5

Affiliation:

1. School of Civil Engineering, Hefei University of Technology, Hefei 230009, China;

2. Department of Engineering Mechanics, State Key Laboratory of Structural Analyses for Industrial Equipment, Dalian University of Technology, Dalian 116024, China

3. State Key Laboratory of Reliability and Intelligence of Electrical Equipment, School of Mechanical Engineering, Hebei University of Technology, Tianjin 300401, China

4. School of Civil Engineering, Hefei University of Technology, Hefei 230009, China

5. Department of Engineering Mechanics, State Key Laboratory of Structural Analyses for Industrial Equipment, Dalian University of Technology, Dalian 116024, China e-mail:

Abstract

Due to the nested optimization loop structure and time-demanding computation of structural response, the computational accuracy and cost of reliability-based design optimization (RBDO) have become a challenging issue in engineering application. Kriging-model-based approach is an effective tool to improve the computational efficiency in the practical RBDO problems; however, a larger number of sample points are required for meeting high computational accuracy requirements in traditional methods. In this paper, an adaptive directional boundary sampling (ADBS) method is developed in order to greatly reduce the computational sample points with a reasonable accuracy, in which the sample points are added along the ideal descending direction of objective function. Furthermore, only sample points located near the constraint boundary are mainly selected in the vicinity of the optimum point according to the strategy of multi-objective optimization; thus, substantial number of sample points located in the failure region is neglected, resulting in the improved performance of computational efficiency. Four numerical examples and one engineering application are provided for demonstrating the efficiency and accuracy of the proposed sampling method.

Publisher

ASME International

Subject

Computer Graphics and Computer-Aided Design,Computer Science Applications,Mechanical Engineering,Mechanics of Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3