Influence of Hydrodynamic Journal Bearings With Multiple Slip Zones on Rotordynamic Behavior

Author:

Bhattacharya A.1,Dutt J. K.2,Pandey R. K.2

Affiliation:

1. Department of Mechanical Engineering, Indian Institute of Technology Delhi, New Delhi 110016, India e-mail:

2. Professor Department of Mechanical Engineering, Indian Institute of Technology Delhi, New Delhi 110016, India e-mail:

Abstract

This paper mainly reports stability investigations of rotors supported on fluid film journal bearings possessing multilocational slip-no-slip zones at the bush–film interface. The coupled solution of governing equations (Reynolds equation, energy equation, heat diffusion equation, lubricant rheological relation, and thermal boundary conditions) has been used to find pressure distributions in the lubricating film followed by evaluation of bearing coefficients. These coefficients have been used to determine stability limit speed (SLS) of the system and its robustness for both short (nearly inflexible) and long (flexible) rotors. Numerical simulations show that the pattern of pressure distribution with multiple slip-no-slip zones is similar to that obtained for multilobe bearings, resulting in substantial improvement of rotor–bearing stability irrespective of eccentricity ratio. A reduction in friction force (up to Sommerfeld number 1.8) and an increase in SLS and robustness compared to conventional bearings are observed when used with short rotors. Typically, up to six pairs of slip-no-slip zones improve SLS of the rotor–shaft system and robustness for short rotors, although more pairs deteriorate both. However, for long rotors, where dynamic rotor forces also act, these bearings provide marginal improvement in stability and robustness only for a small range of slip length.

Publisher

ASME International

Subject

Surfaces, Coatings and Films,Surfaces and Interfaces,Mechanical Engineering,Mechanics of Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3