Affiliation:
1. Colorado State University , Fort Collins, Colorado, United States
Abstract
Abstract
Wave energy converters (WECs) are a promising candidate for meeting the increasing energy demands of today’s society. It is known that the sizing and power take-off (PTO) control of WEC devices have a major impact on their performance. In addition, to improve power generation, WECs must be optimally deployed within a farm. While such individual aspects have been investigated for various WECs, potential improvements may be attained by leveraging an integrated, system-level design approach that considers all of these aspects. However, the computational complexity of estimating the hydrodynamic interaction effects significantly increases for large numbers of WECs. In this article, we undertake this challenge by developing data-driven surrogate models using artificial neural networks and the principles of many-body expansion. The effectiveness of this approach is demonstrated by solving a concurrent plant (i.e., sizing), control (i.e., PTO parameters), and layout optimization of heaving cylinder WEC devices. WEC dynamics were modeled in the frequency domain, subject to probabilistic incident waves with farms of 3, 5, 7, and 10 WECs. The results indicate promising directions toward a practical framework for array design investigations with more tractable computational demands.
Publisher
American Society of Mechanical Engineers
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献