Wake Decay: Effect of Freestream Swirl

Author:

Brookfield J. M.1,Waitz I. A.1,Sell J.1

Affiliation:

1. Massachusetts Institute of Technology, Cambridge, MA

Abstract

A study of the effects of freestream swirl on the decay characteristics of wakes shed from a rotating blade row is presented. The freestream swirl behind the rotor causes the wakes to skew tangentially, stretching the wakes as they are convected from the rotor to the stator. The effect of stretching on wake decay is illustrated using a simplified two-dimensional model. The model is described and the results are compared to 1) measurements from a two-dimensional cascade facility where no stretching or skewing of the wakes occurs, 2) solutions obtained using a three-dimensional, Reynolds-averaged Navier-Stokes solver, and 3) experimental wake measurements taken behind a low hub-to-tip ratio fan. For typical fan geometries with hub-to-tip ratios of approximately 0.5 and rotor-stator spacings of one to two rotor chord lengths, the wake can be stretched by over 50 percent. The stretching increases the mixing rate which leads to a reduction in the mean wake velocity deficit of approximately thirty percent and a widening of the wake of about fifteen percent. These effects account for much of the difference seen between cascade wake measurements and those taken behind rotating fan blade rows. It is therefore important to include such effects when using cascade data for prediction of fluid mechanic, acoustic, or structural phenomena associated with fan wakes. Finally, the study also suggests a potential for small (< 3 dB) reductions in wake-stator interaction noise through tailoring the fan loading distribution to produce particular span wise wake decay characteristics.

Publisher

American Society of Mechanical Engineers

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3