An Assessment of Homogeneous Mixture Method Cavitation Models in Predicting Cavitation in Nozzle Flow

Author:

Villafranco Dorien O.1,Gupta Ankush1,Ryan Emily M.1,Holt R. Glynn1,Grace Sheryl M.1

Affiliation:

1. Department of Mechanical Engineering, Boston University, Boston, MA 02215

Abstract

Abstract The homogeneous mixture method (HMM) is a popular class of models used in the computational prediction of cavitation. Several cavitation models have been developed for use with HMM to govern the development and destruction of vapor in a fluid system. Two models credited to Kunz and Schnerr–Sauer are studied in this paper. The goal of this work is to provide an assessment of the two cavitation submodels in their ability to predict cavitation in nozzle flow. Validation data were obtained via experiments which employ both passive cavitation detection, (PCD) via acoustic sensing and optical cavitation detection (OCD) via camera imaging. The experiments provide quantitative information on cavitation inception and qualitative information on the vapor in the nozzle. The results show that initial vapor formation is not predicted precisely but within reason. A sensitivity analysis of the models to input parameters shows that the Schnerr–Sauer method does not depend upon the estimation of nuclei size and number density. Small changes in the vapor formation rate but not the total vapor volume can be seen when weighting parameters are modified. In contrast, changes to the input parameters for the Kunz model greatly change the final total vapor volume prediction. The assessment also highlights the influence of vapor convection within the method. Finally, the analysis shows that if the fluid and nozzle walls do not support nuclei larger than 40 μm, the methods would still predict cavitation when indeed there would be none in practice.

Publisher

ASME International

Subject

Mechanical Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3