Development of Reduced Pressure Electron Beam Welding Process for Thick Section Pressure Vessel Welds

Author:

Ayres K. R.1,Hurrell P. R.1,Gill C. M.2,Bridger K.1,Burling L. D.1,Punshon C. S.3,Wei Liwu3,Bagshaw N.3

Affiliation:

1. Rolls-Royce plc, Derby, UK

2. Rolls Royce plc, Derby, UK

3. The Welding Institute (TWI) Ltd., Great Abington, Cambridge, UK

Abstract

A reduced pressure electron beam (RPEB) process is being developed in the UK by ‘The Welding Institute’ (TWI) for the manufacture of thick section plate, forging and pipe welds. Potential gains include minimal distortion, fewer weld defects and rapid production times, compared to conventional arc welding processes. To date, RPEB welding equipment and parameters have been successfully developed and applied in a sealed chamber under partial vacuum (∼1mbar), to produce 1-pass seam welds in low alloy steel plates and forgings. Rolls-Royce commissioned TWI to produce RPEB welds in SA508 Grade 3 Class 1 steel forgings of between 100mm and 160mm thickness, as part of a feasibility study for nuclear pressure vessel applications. This paper presents results of micro-structural examinations, material property tests and residual stress analyses of RPEB welds in SA508 Grade 3 steel forgings, both in the as-welded condition and after post weld heat treatment (PWHT). This data was required in order to assess the structural integrity of the weldment. A narrow uniform fusion zone approximately 10mm wide and 3mm deep heat affected zone (HAZ) was produced. High hardness levels were measured in the weld HAZ, but the application of PWHT at 600°C had a beneficial tempering effect, reducing the maximum hardness to below 300Hv. A 3D finite element model was used and deep hole-drilling measurements were independently performed, to determine welding residual stress distributions. In both cases yield magnitude tri-axial tensile stresses were evaluated in the centre of the weld and adjacent HAZ, of up to +600MPa. This result is as expected since the centre region is the last to solidify and cool, with a high degree of restraint to weld shrinkage. However effective stress relaxation occurs during PWHT, mainly due to creep, reducing the maximum residual stress to about 100MPa (or 20% yield strength). This feasibility study has shown that RPEB welding is a viable method for fabricating large pressure vessels in low alloy steels. Sound joints can be produced in sections up to 160mm thick in a vacuum chamber. Further development work is being done by TWI in order to apply the technique out-of-chamber using a local vacuum seal.

Publisher

ASMEDC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3