Numerical Analysis of Microstructure and Residual Stress in the Weld Zone of Multiwire Submerged Arc Welding

Author:

Yu Enlin1,Han Yi2,Xiao Haixiang1,Gao Ying3

Affiliation:

1. National Engineering Research Center for Equipment and Technology of Cold Rolling Strip, Yanshan University, Qinhuangdao 066004, China

2. National Engineering Research Center for Equipment and Technology of Cold Rolling Strip, Yanshan University, Qinhuangdao 066004, China e-mail:

3. College of Materials Science and Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China

Abstract

As oil and gas pipelines develop toward large throughput and high pressure, more and more attention has been paid to welding quality of oil pipelines. Submerged arc welding is widely applied in manufacturing of large-diameter welded pipes, and the welding quality has an impact on pipeline safety. With a multiwire submerged arc welding test platform and real-time temperature measurement system, temperature measurement has been done for multiwire submerged arc welding process with and without flux coverage, respectively. As a result, thermal cycling curves in both cases have been obtained, and convection and radiation coefficients of flux-covered X80 pipeline steel in air-cooled environment have been corrected. By using sysweld software, a finite-element computational model was set up for microstructure and residual stress in the weld zone of multiwire longitudinal submerged arc welding. Comparative experiment has been done to obtain welding temperature field with relatively high accuracy. Calculation and analysis of residual stress versus preheat residual stress decreased with increasing preheat temperature up to 100 °C, meanwhile content of bainite in microstructure fell, facilitating reduction in residual stress to some extent. This study provides quantitative reference for further optimization of welding parameters and improvement in weld mechanical properties.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Safety, Risk, Reliability and Quality

Reference15 articles.

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Numerical simulation and experimental research on submerged arc welding of stainless steel composite plate;The International Journal of Advanced Manufacturing Technology;2023-11-01

2. Performance Evaluation of Alternating Current Square Waveform Submerged Arc Welding as a Candidate for Fabrication of Thick Welds in 2.25Cr-1Mo Heat-Resistant Steel;Journal of Pressure Vessel Technology;2020-04-16

3. Numerical modelling of welded T-joint configurations using SYSWELD;Science and Technology of Materials;2018-12

4. Residual Stress;SpringerBriefs in Applied Sciences and Technology;2018-08-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3