Characteristics of an Annular Turbine Cascade at Low Reynolds Numbers

Author:

Matsunuma Takayuki1,Abe Hiroyuki1,Tsutsui Yasukata1,Murata Koji2

Affiliation:

1. Ministry of International Trade and Industry, Tsukuba, Japan

2. The University of Tsukuba, Tsukuba, Japan

Abstract

The aerodynamic characteristics of turbine cascades are thought to be relatively satisfactory due to the favorable pressure gradient of the accelerating flow. But within the low Reynolds number region of approximately 6×104 where the 300kW ceramic gas turbines which are being developed under the New Sunshine Project of Japan operate, the characteristics such as boundary layer separation, reattachment and secondary flow which lead to prominent power losses can not be easily predicted. In this research, experiments have been conducted to evaluate the performance of an annular turbine stator cascade. Wakes of the cascade were measured using a single hot wire and five hole pressure tube, for a range of blade chord Reynolds numbers based on the inlet condition from 2×104 to 12×104. Flow visualizations on the suction surface of the blade were carried out using oil film method. At low Reynolds numbers, the flow structure in the annular cascade was quite complex and three-dimensional. The separation line on the suction surface moved upstream due to the decrease of Reynolds number. In addition, the growth of secondary flows, i.e., passage vortices and leakage vortex, was extremely under the influence of Reynolds number.

Publisher

American Society of Mechanical Engineers

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3