In Vitro Biomechanics of the Cervical Spine: A Systematic Review

Author:

Ansaripour Hossein12,Ferguson Stephen J.3,Flohr Markus4

Affiliation:

1. CeramTec GmbH , CeramTec-Platz 1-9, Plochingen 73207, Germany ; , Zurich 8093, Switzerland

2. Institute for Biomechanics, D-HEST, ETH , CeramTec-Platz 1-9, Plochingen 73207, Germany ; , Zurich 8093, Switzerland

3. Institute for Biomechanics, D-HEST, ETH , Hönggerbergring 64, HPP O-22, Zurich 8093, Switzerland

4. CeramTec GmbH , CeramTec-Platz 1-9, Plochingen 73207, Germany

Abstract

Abstract In vitro testing has been conducted to provide a comprehensive understanding of the biomechanics of the cervical spine. This has allowed a characterization of the stability of the spine as influenced by the intrinsic properties of its tissue constituents and the severity of degeneration or injury. This also enables the preclinical estimation of spinal implant functionality and the success of operative procedures. The purpose of this review paper was to compile methodologies and results from various studies addressing spinal kinematics in pre- and postoperative conditions so that they could be compared. The reviewed literature was evaluated to provide suggestions for a better approach for future studies, to reduce the uncertainties and facilitate comparisons among various results. The overview is presented in a way to inform various disciplines, such as experimental testing, design development, and clinical treatment. The biomechanical characteristics of the cervical spine, mainly the segmental range of motion (ROM), intradiscal pressure (IDP), and facet joint load (FJL), have been assessed by testing functional spinal units (FSUs). The relative effects of pathologies including disc degeneration, muscle dysfunction, and ligamentous transection have been studied by imposing on the specimen complex load scenarios imitating physiological conditions. The biomechanical response is strongly influenced by specimen type, test condition, and the different types of implants utilized in the different experimental groups.

Publisher

ASME International

Subject

Physiology (medical),Biomedical Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

全球学者库

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"全球学者库"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前全球学者库共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2023 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3