A Review of Electrical Impedance Techniques for the Measurement of Multiphase Flows

Author:

Ceccio S. L.1,George D. L.1

Affiliation:

1. Department of Mechanical Engineering and Applied Mechanics, University of Michigan, Ann Arbor, MI 48109-2121

Abstract

Various developments in the use of electrical impedance methods in multiphase flow are reviewed. Because the components of a multiphase flow often exhibit different electrical properties, a variety of probes have been developed to study such flows by measuring impedance in the region of interest. Nonintrusive devices are used to measure spatially averaged flow properties, such as void fraction. Local probes have been developed to measure a variety of pointwise flow quantities, including film thickness in annular flow, local void fraction in dispersed flows, bubble and particle sizes, and flow velocities. Such impedance probes are usually easy to build and use, and can have a high frequency response. However, the spatial resolution of the probes may be limited, calibration may be difficult, and the accuracy of some probes may be limited to specific phase distributions. Researchers are now using electric fields to reconstruct the impedance distribution within a measurement volume via Electrical Impedance Tomography (EIT). EIT systems employ voltage and current measurements on the boundary of a domain to create a representation of the impedance distribution within the domain. EIT inversion algorithms are discussed, and the application of EIT to multiphase flows is reviewed. The benefits and limitations of EIT systems are also discussed.

Publisher

ASME International

Subject

Mechanical Engineering

Cited by 101 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Composition Determination;Measurement in Fluid Mechanics;2024-04-11

2. References;Handbook on Thermal Hydraulics in Water-Cooled Nuclear Reactors;2024

3. References;Handbook on Thermal Hydraulics in Water-Cooled Nuclear Reactors;2024

4. References;Handbook on Thermal Hydraulics in Water-Cooled Nuclear Reactors;2024

5. Capacitive Sensors for Multiphase Flow Measurement: A Review;IEEE Sensors Journal;2022-11-15

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3