Reduction of Torque-Induced Bending Vibrations in Ball Screw-Driven Machines via Optimal Design of the Nut

Author:

Okwudire Chinedum E.12

Affiliation:

1. ASME Member

2. Mechatronics and Sustainability Research Laboratory, Department of Mechanical Engineering, University of Michigan, 2350 Hayward, Ann Arbor, MI 48109

Abstract

As a result of the push for sustainable machine designs, efforts are constantly being made to reduce the mass/inertia of moving machine components so as to minimize material usage and energy consumption. However, the reduction of structural stiffness that often accompanies such efforts gives rise to unwanted vibrations which must be effectively mitigated to ensure satisfactory performance of the designed machine. The ball screw mechanism (BSM) is commonly used in machines for motion and force transmission. Recent research has shown that, due to the coupling introduced by the nut, a torque applied to the shaft of a ball screw mechanism causes undesirable lateral (bending) vibrations of the screw, which adversely affect the fatigue life and positioning accuracy of ball screw-driven machines. In this paper, an analysis of the stiffness matrix connecting the screw to the nut is used to show that the entry/exit angle of the balls and the lead angle of the screw have the greatest influence on the coupling between the torsional and lateral directions. An objective function is proposed to minimize the static coupling between the applied torque and lateral deformations of the screw. The existence of local minima in the objective function is shown to be dependent on the cyclical characteristics of cross-coupling terms in the screw-nut interface stiffness matrix as a function of the entry/exit angle of the balls. Moreover, the sensitivity of the local minima to other nut/screw parameters is shown to highly depend on the lead angle. Simulations conducted on the finite element (FE) model of a single-axis ball screw-driven machine demonstrate that the optimally selected entry/exit angles result in a significant reduction of the low-frequency torque-induced vibrations of the machine compared to the unoptimized case, particularly when the lead angle is small. The proposed method is therefore suitable for reducing the torque-induced lateral vibrations of ball screws without increasing the diameter (i.e., inertia) of the screw, thus leading to more sustainable designs of ball screw-driven machines.

Publisher

ASME International

Subject

Computer Graphics and Computer-Aided Design,Computer Science Applications,Mechanical Engineering,Mechanics of Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3