A Triphasic Theory for the Swelling and Deformation Behaviors of Articular Cartilage

Author:

Lai W. M.1,Hou J. S.1,Mow V. C.1

Affiliation:

1. Orthopaedic Research Laboratory, Departments of Mechanical Engineering and Orthopaedic Surgery, Columbia University, New York, NY 10032

Abstract

Swelling of articular cartilage depends on its fixed charge density and distribution, the stiffness of its collagen-proteoglycan matrix, and the ion concentrations in the interstitium. A theory for a tertiary mixture has been developed, including the two fluid-solid phases (biphasic), and an ion phase, representing cation and anion of a single salt, to describe the deformation and stress fields for cartilage under chemical and/or mechanical loads. This triphasic theory combines the physico-chemical theory for ionic and polyionic (proteoglycan) solutions with the biphasic theory for cartilage. The present model assumes the fixed charge groups to remain unchanged, and that the counter-ions are the cations of a single salt of the bathing solution. The momentum equation for the neutral salt and for the intersitial water are expressed in terms of their chemical potentials whose gradients are the driving forces for their movements. These chemical potentials depend on fluid pressure p, salt concentration c, solid matrix dilatation e and fixed charge density cF. For a uni-uni valent salt such as NaCl, they are given by μi = μoi + (RT/Mi)ln[γ±2c (c + c F)] and μW = μow + [p − RTφ(2c + cF) + Bwe]/ρTw, where R, T, Mi, γ±, φ, ρTw and Bw are universal gas constant, absolute temperature, molecular weight, mean activity coefficient of salt, osmotic coefficient, true density of water, and a coupling material coefficient, respectively. For infinitesimal strains and material isotropy, the stress-strain relationship for the total mixture stress is σ = − pI − TcI + λs(trE)I + 2μsE, where E is the strain tensor and (λs,μs) are the Lame´ constants of the elastic solid matrix. The chemical-expansion stress (− Tc) derives from the charge-to-charge repulsive forces within the solid matrix. This theory can be applied to both equilibrium and non-equilibrium problems. For equilibrium free swelling problems, the theory yields the well known Donnan equilibrium ion distribution and osmotic pressure equations, along with an analytical expression for the “pre-stress” in the solid matrix. For the confined-compression swelling problem, it predicts that the applied compressive stress is shared by three load support mechanisms: 1) the Donnan osmotic pressure; 2) the chemical-expansion stress; and 3) the solid matrix elastic stress. Numerical calculations have been made, based on a set of equilibrium free-swelling and confined-compression data, to assess the relative contribution of each mechanism to load support. Our results show that all three mechanisms are important in determining the overall compressive stiffness of cartilage.

Publisher

ASME International

Subject

Physiology (medical),Biomedical Engineering

Cited by 945 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3