The Aspect Ratio Effect on Natural Convection in an Enclosure With Protruding Heat Sources

Author:

Keyhani M.1,Chen L.1,Pitts D. R.1

Affiliation:

1. Department of Mechanical and Aerospace Engineering, The University of Tennessee, Knoxville, TN 37996-2110

Abstract

The aspect ratio effect on natural convection heat transfer in a rectangular enclosure with protruding heat sources has been experimentally investigated. Five protruding heaters were mounted with uniform vertical spacing on one vertical wall. The vertical wall opposite to the wall on which heated sections were mounted was movable so that the enclosure width could be adjusted to the desired value. The top surface of the test enclosure was an isothermal heat sink. All other surfaces except the two end vertical surfaces were insulated. The five heaters were identical with each having horizontal protuberance of L3 = 9 mm and vertical height of L1 = 15 mm. The vertical spacing between the heaters was L2 = 15 mm. The enclosure width was varied in experiments from W = 13.5 mm to 45 mm. The experiments were conducted for six values of cavity width resulting in variations in the cavity height-to-width ratios (aspect ratios) and cavity width-to-protruding heater height ratios of 3.67 to 12.22 and 1.5 to 5.0, respectively. Ethylene glycol was used as the convective medium. Flow visualization pictures and heat transfer data indicate that the starting point of core flow directly affects the local heat transfer coefficient of the bottom heater, while the secondary flow cell between the top heated section and the top sink surface influences the heat transfer coefficient of the top heater. Cavity width variation influences the heat transfer process mainly through altered flow patterns. This influence is weak when the ratio of width-to-protruding height is 4.0 and negligible when this ratio is 5.0 or more. Based on the local height length scale (measured from the bottom of the cavity) the data for all the cavity widths are correlated and an explicit relation for the aspect ratio effect on local Nusselt number is reported. The correlation of local Nusselt number versus local modified Rayleigh number is independent of the number of heaters in the vertical array, cavity width-to-heater protrusion height ratio, W/L3, and vertical height location of the heaters. This conclusion is based on the present results and previously reported data and is valid for the following conditions: 1.5 ≤ W/L3 ≤ 5.0; 3.67 ≤ aspect ratio ≤ 1.22; vertical height of heater from 8 to 15 mm; and number of heated sections from 5 to 10.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Cited by 28 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3