On the Axisymmetric Problem of the Theory of Elasticity for an Infinite Region Containing Two Spherical Cavities

Author:

Sternberg E.1,Sadowsky M. A.1

Affiliation:

1. Illinois Institute of Technology, Chicago, Ill.

Abstract

Abstract This paper contains a solution in series form for the stress distribution in an infinite elastic medium which possesses two spherical cavities of the same size. The loading consists of tractions applied to the cavities, as well as of a uniform field of tractions at infinity, and both are assumed to be symmetric with respect to the common axis of symmetry of the cavities and with respect to the plane of geometric symmetry perpendicular to this axis. The loading is otherwise unrestricted. The solution is based upon the Boussinesq stress-function approach and apparently constitutes the first application of spherical dipolar co-ordinates in the theory of elasticity. Numerical evaluations are given for the case in which the surfaces of the cavities are free from tractions and the stress field at infinity is hydrostatic. The results illustrate the interference of two sources of stress concentration in a three-dimensional problem. The approach used here may be extended to cope with the general equilibrium problem for a region bounded by two nonconcentric spheres.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 40 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3