Numerical Investigation of Natural Convection Heat Transfer From an Array of Horizontal Fins in Non-Newtonian Power-Law Fluids

Author:

Mulamootil Jacob K.1,Dash Sukanta K.1

Affiliation:

1. Department of Mechanical Engineering, Indian Institute of Technology Kharagpur, Kharagpur 721302, India e-mail:

Abstract

Natural convection heat transfer from an array of horizontal rectangular fins on a vertical flat plate in non-Newtonian power-law fluids has been studied. The underlying physical principles affecting heat transfer were studied using comprehensive solutions obtained from numerical investigations. Heat transfer to the power-law fluid was found to depend on the fluid rheology (power-law index) and significantly on the geometric parameters (interfin spacing, fin length) as well. The dependence was quantified using the Nusselt number (Nu) and fin effectiveness (Q/Q0). The present study shows that compared to a fin analyzed in isolation, the spatial arrangement of multiple fins relative to one another in an array does have a significant effect on the flow field around subsequent fins in power-law fluids. Therefore, the average heat transfer coefficient of the natural convection system is affected significantly. The variation of Nu with the dimensionless fin length (l/L), dimensionless interfin spacing (S/L), and fluid power-law index (n) was plotted. The dependence was found to be counter intuitive to expectations based on studies for natural convection from vertical flat plates to power-law fluids. In the present study involving fins, shear-thinning fluids (n < 1) show a decrease in heat transfer and shear-thickening fluids (n > 1) show an enhancement in heat transfer for higher l/L values. The results of the study may be useful in the design of natural convection systems that employ power-law fluids to enhance or control heat transfer.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3