A Bayesian Spatiotemporal Modeling Approach to the Inverse Heat Conduction Problem

Author:

Olabiyi Ridwan1ORCID,Pandey Hari2ORCID,Hu Han2ORCID,Iquebal Ashif1

Affiliation:

1. School of Computing and Augmented Intelligence, Arizona State University , Tempe, AZ, 85281

2. Department of Mechanical Engineering, University of Arkansas , Fayetteville, AR, 72701

Abstract

Abstract This study introduces a Bayesian spatiotemporal modeling approach to solve inverse heat conduction problems (IHCPs), employing penalized splines within a spatiotemporal forward model. The complexity and ill-posed nature of IHCPs, characterized by potential nonexistence, nonuniqueness, or instability of solutions, pose significant challenges for traditional methods. Addressing this, our study presents a spatiotemporal forward model that incorporates spatial, temporal, and interaction terms, accurately capturing the intricate dynamics inherent in IHCPs and using this information as a leverage to solve the inverse problem. We adopted a Bayesian inference framework for the subsequent parameter estimation problem and developed a Gibbs sampling algorithm to sample from the posterior distribution of the model's parameters, enhancing the estimation process. Through case studies on a one-dimensional (1D) heat simulation and a pool boiling experiment using multisensor thermocouple data for heat flux reconstruction, we demonstrate the model's superiority over traditional methods. The inclusion of the spatiotemporal interaction term significantly enhances model performance, indicating its potential for broader application in solving IHCPs. The application of this method in both simulated and real-world scenarios highlights its effectiveness in capturing the spatiotemporal complexities of IHCPs. This work contributes to the field by offering a robust methodology for addressing the spatial and temporal complexities inherent in IHCPs, supported by a comprehensive Bayesian inference framework and the use of a Gibbs sampling algorithm for parameter estimation.

Publisher

ASME International

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3