Affiliation:
1. University of Cincinnati Thermal-Fluids & Thermal Processing Laboratory, 598 Rhodes Hall, Cincinnati, OH 45221-0072
Abstract
Abstract
The characterization and scaling of the thermal-hydraulic performance in wavy plate-fin compact heat exchanger cores, based on the understanding of the physical phenomena and heat transfer enhancement mechanism is delineated. Experimental data are presented for forced convection in air (Pr = 0.71) with flow rates in the range 50 ≤ Re ≤ 4000. A variety of wavy-fin cores that span viable applications, with geometrical attributes described by the cross section aspect ratio α (ratio of fin spacing to height), fin corrugation aspect ratio γ (ratio of 2× corrugation amplitude to wave pitch), and fin spacing ratio ζ (ratio of fin spacing to wave pitch), are considered. To characterize and correlate the vortex-flow mixing in interfin spaces, a Swirl number Sw is introduced from the balance of viscous, inertial and centrifugal forces. It is shown that the laminar, transitional and turbulent flow regimes can be explicitly identified by this Swirl number. Based on the experimental results and extended analysis, new correlations for Fanning friction factor f and Colburn factor j are developed with Sw, α, γ, and ζ as scaling parameters. Requisite expressions are devised by a superposition of both enhancement components due to the corrugated surface area enlargement and induced swirl flow field, and they are combined to cover the laminar, transitional and turbulent regimes by the method of asymptotic matching. The resulting generalized correlations are further shown to predict all available experimental data for f and j factors to within ±20% and ±15%, respectively.
Funder
Advanced Research Projects Agency
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献