AFM Imaging, Roughness Analysis and Contact Mechanics of Magnetic Tape and Head Surfaces

Author:

Oden P. I.1,Majumdar A.2,Bhushan B.3,Padmanabhan A.2,Graham J. J.4

Affiliation:

1. Department of Physics, Arizona State University, Tempe, AZ 85287

2. Department of Mechanical and Aerospace Engineering, Arizona State University, Tempe, AZ 85287

3. I.B.M. Research Division, Almaden Research Center, San Jose, CA 95120

4. STM-Industrial Affiliates Program, Arizona State University, Tempe, AZ 85287

Abstract

Roughness measurements of a magnetic tape, a biaxially oriented poly (ethylene terephthalate) (PET) substrate, a tape head and a rigid-disk slider were made by an atomic force microscope (AFM) and a non-contact optical profiler (NOP). The lateral resolution of the surface topographs ranges from 1 μm (for NOP) down to 1 nm (for AFM). The AFM images show submicron features of the surface that are characteristic of the manufacturing processes. Some of the statistical roughness parameters conventionally used in theories of contact mechanics showed strong dependence on instrument resolution. This suggests that, firstly, roughness measured by NOP at resolutions larger than 1 μm cannot be used to study tribology at sub-micrometer scales and, secondly, a scale-independent characterization by fractal geometry is necessary. Fractal analysis of the tape surface reveals two regimes of roughness demarcated by a scale of 0.1 μm corresponding to the size of magnetic particles. The fractal behavior explains the dependence of the rms height, slope and curvature on the instrument resolution. The predictions of real area of contact suggest that nanometer-scale asperities tend to deform plastically whereas micrometer-scale ones deform elastically.

Publisher

ASME International

Subject

Surfaces, Coatings and Films,Surfaces and Interfaces,Mechanical Engineering,Mechanics of Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3