The Effect of Pentagalloyl Glucose on the Wall Mechanics and Inflammatory Activity of Rat Abdominal Aortic Aneurysms

Author:

Thirugnanasambandam Mirunalini1,Simionescu Dan T.2,Escobar Patricia G.3,Sprague Eugene4,Goins Beth5,Clarke Geoffrey D.5,Han Hai-Chao6,Amezcua Krysta L.1,Adeyinka Oluwaseun R.1,Goergen Craig J.7,Finol Ender8

Affiliation:

1. UTSA/UTHSA Joint Graduate Program in Biomedical Engineering, University of Texas at San Antonio, San Antonio, TX 78249

2. Department of Bioengineering, Clemson University, Clemson, SC 29634

3. Department of Medicine, University of Texas Health at San Antonio, San Antonio, TX 78229

4. UTSA/UTHSA Joint Graduate Program in Biomedical Engineering, University of Texas at San Antonio, San Antonio, TX 78249; Department of Medicine, University of Texas Health at San Antonio, San Antonio, TX 78229

5. Department of Radiology, University of Texas Health at San Antonio, San Antonio, TX 78229

6. UTSA/UTHSA Joint Graduate Program in Biomedical Engineering, University of Texas at San Antonio, San Antonio, TX 78249; Department of Mechanical Engineering, University of Texas at San Antonio, San Antonio, TX 78249

7. Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907

8. UTSA/UTHSA Joint Graduate Program in Biomedical Engineering, University of Texas at San Antonio, San Antonio, TX 78249; Department of Mechanical Engineering, University of Texas at San Antonio, San Antonio, TX 78249 e-mail:

Abstract

An abdominal aortic aneurysm (AAA) is a permanent localized expansion of the abdominal aorta with mortality rate of up to 90% after rupture. AAA growth is a process of vascular degeneration accompanied by a reduction in wall strength and an increase in inflammatory activity. It is unclear whether this process can be intervened to attenuate AAA growth, and hence, it is of great clinical interest to develop a technique that can stabilize the AAA. The objective of this work is to develop a protocol for future studies to evaluate the effects of drug-based therapies on the mechanics and inflammation in rodent models of AAA. The scope of the study is limited to the use of pentagalloyl glucose (PGG) for aneurysm treatment in the calcium chloride rat AAA model. Peak wall stress (PWS) and matrix metalloproteinase (MMP) activity, which are the biomechanical and biological markers of AAA growth and rupture, were evaluated over 4 weeks in untreated and treated (with PGG) groups. The AAA specimens were mechanically characterized by planar biaxial tensile testing and the data fitted to a five-parameter nonlinear, hyperelastic, anisotropic Holzapfel–Gasser–Ogden (HGO) material model, which was used to perform finite element analysis (FEA) to evaluate PWS. Our results demonstrated that there was a reduction in PWS between pre- and post-AAA induction FEA models in the treatment group compared to the untreated group using either animal-specific or average material properties. However, this reduction was not statistically significant. Conversely, there was a statistically significant reduction in MMP-activated fluorescent signal between pre- and post-AAA induction models in the treated group compared to the untreated group. Therefore, the primary contribution of this work is the quantification of the stabilizing effects of PGG using biomechanical and biological markers of AAA, thus indicating that PGG could be part of a new clinical treatment strategy that will require further investigation.

Funder

American Heart Association

"National Heart, Lung, and Blood Institute"

Publisher

ASME International

Subject

Physiology (medical),Biomedical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3