Layerwise Automated Visual Inspection in Laser Powder-Bed Additive Manufacturing

Author:

Aminzadeh Masoumeh1,Kurfess Thomas1

Affiliation:

1. Georgia Institute of Technology, Atlanta, GA

Abstract

Laser powder-bed fusion (L-PBF) is an additive manufacturing (AM) process that enables fabrication of functional metal parts with near-net-shape geometries. The drawback to L-PBF is its lack of precision as well as the formation of defects due to process randomness and irregularities associated with laser powder fusion. Over the past two decades much research has been conducted to control laser powder fusion in order to provide parts of higher quality. This paper addresses online quality monitoring in AM by in-situ automated visual inspection of each layer which is aimed to geometric objects and defects from high-resolution visual images. A scheme for online defect detection system is presented that consists of three levels of processing: low-level, intermediate-level, and high-level processing. Each level is described and appropriately divided to several stages, when insightful. Techniques that are feasible in each level for successful defect detection and classification are identified and described. Requirements and specifications of the measurement data to achieve desired performance of the online defect detection system are stated. Image processing algorithms are developed for first level of processing and implemented for segmentation of geometric objects. Due to the large variation of intensities within the powder region and fused regions, and also the non-multi-modal nature of the image, the basic segmentation algorithms such as thresholding do not produce appropriate results. In this work, morphological operations are effectively designed and implemented following thresholding to achieve the desired object segmentation. Examples of implementations are given. The paper provides the results of object segmentation which is the initial stage of development of an in-situ automated visual inspection for L-PBF process.

Publisher

American Society of Mechanical Engineers

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3