Bubbler System Testing in Controlled Environment for Harsh Environment Oil Spill Recovery

Author:

Thodi Premkumar1,Talimi Vandad1,Burton Robert1,Abdi Majid2,Bruce Jonathon1,Lui Lei1,Brown Robert3

Affiliation:

1. C-CORE, St. John’s, Newfoundland and Labrador, Canada

2. M.A. Procense, Inc., St. John’s, Newfoundland and Labrador, Canada

3. Memorial University, St. John’s, Newfoundland and Labrador, Canada

Abstract

Abstract Mechanical recovery techniques are used to clean up oil spills in marine environments; however, their efficiency is challenged when dealing with heavy oil, ice covered water and high sea states. Current mechanical recovery techniques are based on removing oil from the water surface, however, a significant amount of oil could remain in the water column below the surface due to turbulent ocean conditions, the density of heavy oil and oil escaping underneath the booms when the sweeping speed increases. To enhance the oil recovery effectiveness, oil particles in the water column need to be guided to the surface to be recovered by the skimmers. This paper focusses on the development of a test protocol and physical testing in C-CORE’s lab of a bubbler system for enhancing the harsh environment oil spill recovery. Air bubbles produce an upward flow in the water body, which guides the submerged particles to the surface. The air bubbles also attach to the oil particles, leading to an increase in the buoyancy and rate at which oil droplets rise to the surface. By adopting this technique for oil recovery, additional oil particles can be brought to the surface. In the study, the bubbler system was tested in both stationary and advancing conditions with medium and heavy oils. The results of the stationary and advancing tests indicate that the oil recovery ratios can be significantly enhanced by using an optimized bubbler system. Different types and configurations of bubblers were tested by varying the airflow rates and bubbler advancing speeds to determine the optimal solution. The optimal bubbler system has been observed to enhance the recovery ratio from 41.5% to 84.8% with airflow rates ranging from 0.05 to 0.20 CFM/foot. Furthermore, the effective integration of the bubbler system with a mechanical recovery system, its deployment and retrieval in a near field condition were demonstrated during tests in an outdoor tank.

Publisher

American Society of Mechanical Engineers

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3