Effects of an Upstream Cavity on the Secondary Flow in a Transonic Turbine Cascade

Author:

Abo El Ella H. M.,Sjolander S. A.1,Praisner T. J.2

Affiliation:

1. Mechanical and Aerospace Engineering, Carleton University, Ottawa, Ontario, ON K1S 5B6, Canada

2. Pratt and Whitney Aircraft, United Technologies, East Hartford, Connecticut, 06108

Abstract

This paper examines experimentally the effects of an upstream cavity on the flow structures and secondary losses in a transonic linear turbine cascade. The cavity approximates the endwall geometry resulting from the platform overlap at the interface between stationary and rotating turbine blade rows. Previous investigations of the effects of upstream cavity geometries have been conducted mainly at low-speed conditions. The present work aims to extend such research into the transonic regime with a more engine representative upstream platform geometry. The investigations were carried out in a blow-down type wind tunnel. The cavity is located at 30 % of axial chord from the leading edge, extends 17 % of axial-chord in depth, and is followed by a smooth ramp to return the endwall to its nominal height. Two cascades are examined for the same blade geometry: the baseline cascade with a flat endwall and the cascade with the cavity endwall. Measurements were made at the design incidence and the outlet design Mach number of 0.80. At this condition, the Reynolds number based on outlet velocity is about 600,000. Off-design outlet Mach numbers of 0.69, and 0.89 were also investigated. Flowfield measurements were carried out at 40 % axial-chord downstream of the trailing edge, using a seven-hole pressure probe, to quantify losses and identify the flow structures. Additionally, surface flow visualization using an ultra-violet reactive dye was employed at the design Mach number, on the endwall and blade surfaces, to help in the interpretation of the flow physics. The experimental results also include blade-loading distributions, and the probe measurements were processed to obtain total-pressure loss coefficients, and streamwise vorticity distributions. It was found that the presence of the upstream cavity noticeably altered the structure and the strength of the secondary flow. Some effect on the secondary losses was also evident, with the cavity having a larger effect at the higher Mach number.

Publisher

ASME International

Subject

Mechanical Engineering

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3